Step of Proof: p-fun-exp-add-sq
11,40
postcript
pdf
Inference at
*
2
I
of proof for Lemma
p-fun-exp-add-sq
:
1.
A
: Type
2.
f
:
A
(
A
+ Top)
3.
x
:
A
4.
m
:
5. 0 <
m
6.
n
:
. (
can-apply(
f
^
m
- 1;
x
))
((
f
^
n
+(
m
- 1)(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
- 1;
x
))))
7.
n
:
8.
can-apply(
f
^
m
;
x
)
(
f
^
n
+
m
(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
;
x
)))
latex
by CaseNat 0 `n'
latex
1
:
1:
9.
n
= 0
1:
(
f
^0+
m
(
x
)) ~ (
f
^0(do-apply(
f
^
m
;
x
)))
2
:
2:
9.
(
n
= 0)
2:
(
f
^
n
+
m
(
x
)) ~ (
f
^
n
(do-apply(
f
^
m
;
x
)))
.
Definitions
Dec(
P
)
,
P
Q
,
left
+
right
,
x
:
A
B
(
x
)
,
,
{
x
:
A
|
B
(
x
)}
,
A
B
,
A
,
False
,
s
~
t
,
,
s
=
t
,
t
T
,
,
SQType(
T
)
,
x
:
A
.
B
(
x
)
,
P
Q
,
{
T
}
Lemmas
decidable
int
equal
origin